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1. Introduction
Topology optimization is a maturing field that has resulted in a new way to engi-
neer structures.1 Essentially, given a set of loads and boundary conditions, topology
optimization can deliver an optimal structure using only a user specified amount
of material. One drawback of topology optimization is that optimized solutions are
sometimes difficult to manufacture due to their complexity; however, additive man-
ufacturing allows for the flexibility needed to produce optimized structures.2 Con-
trary to traditional manufacturing methods, additive manufacturing proceeds by the
deposition of a material, so that a structure is built up by layers.

Typically, additive manufacturing devices (3-dimensional [3-D] printers, e.g.), use
the stereolithography (STL) file format, which is a surface description of an object.
Unfortunately, many topology optimization methods in use today use a volumetric
description of a structure, necessitating postprocessing if additive manufacturing
is to be used. Worse yet, topology optimization also typically uses a continuous
parameter to describe the structure in a set of pixels or voxels (3-D pixels), meaning
that there is no definitive notion of a surface. The use of pixels or voxels also means
that the result can be somewhat resolution-dependent. Each of these issues will be
addressed in the following methodology.

In this report, a topology optimization postprocessing method is described that uses
the Computational Geometry Algorithms Library (CGAL).3 CGAL is a C++-based
library that includes a large number of geometry processing algorithms. The method
detailed here will focus on 3 algorithms: α-shapes, mesh simplification, and sub-
division surfaces. First, α-shapes provide a method for obtaining a surface from a
set of points in space. Second, mesh simplification is used to reduce the overall file
size of the resulting geometry. Third, subdivision can be optionally used to smooth
a surface. In addition to these 3 geometric algorithms, a set of points must be gen-
erated from the result of the topology optimization scheme. The method for doing
so is straightforward, though it involves a user-specified threshold for the inclusion
of points.

The remainder of the report is organized as follows: In Section 2 the overall method-
ology is presented along with a 2-dimensional (2-D) example. Next, Section 3
presents the postprocessing of a 3-D example. Finally, Section 4 concludes the re-
port.
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2. Methodology
In this section, a CGAL-based topology postprocessing methodology is described
in detail. The postprocessing method proceeds in 5 steps: Topology optimization,
point cloud generation, α-shape generation, mesh simplification, and (optionally)
mesh subdivision. First, topology optimization is reviewed using the standard lin-
ear elastic method in Section 2. Next, generation of a point cloud representation
is discussed. This point cloud representation is then converted to a surface using
alpha-shapes as described in Section 2. Mesh simplification is next applied to re-
duce the size of the resulting data without altering the geometry. The resulting ge-
ometry of the the previous steps can be somewhat nonsmooth (depending on the
resolution of the original optimization), so a smoothing method is discussed that
uses subdivision surfaces such as Catmull-Clark or Doo-Sabin.

2.1 Topology Optimization
Topology optimization applied to structural problems using a voxel/pixel geometry
representation coupled with a local optimization method is summarized in the well-
known book by Bendsøe and Sigmund.1 The basic idea is to discretize the area
of interest into a set of cubes or squares and optimize for a continuous range of
material properties rather than discrete values. The resolution of the optimization is
given by the number of voxels in each dimension: Nx,Ny, and Nz. The continuous
range of material properties facilitates the use of a local, gradient-based optimizer,
and can be specified as

E (x, y, z) = p (x, y, z)Emax, (1)

where E (x, y, z) is the elastic modulus at a point (x, y, z) (assumed to be the
voxel’s center point), Emax is the maximum elastic modulus, and 0 < p ≤ 1 is
the optimization parameter where p = 1 indicates presence of material and p = 0

indicates void. (In practice, p = 0 is not strictly allowed, as elements with zero
stiffness lead to a singular stiffness matrix. Instead, some small value pmin is used,
though p = 0 will be stated throughout for simplicity.)

After discretization, boundary conditions are specified in terms of forces and dis-
placements. The boundary conditions, along with the geometry of the region of
interest and desired volume fraction, determine the solution. In other words, a struc-
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ture optimized for compression will be much different than one designed for shear
loading.

Ultimately, the solution to a given problem is specified as a set of voxels or pix-
els, each with a real-valued number p specifying the elastic modulus at that voxel.
Penalization methods are applied to restrict, as much as possible, the solution to
discrete values of elastic moduli (i.e., p = 0 or p = 1), though near a structure’s
edges, nondiscrete values are typical. The lack of discrete solutions for p intro-
duces the first approximation necessary for postprocessing of optimized solutions:
A threshold value for p must be chosen that specifies which voxels to include in the
solution.

As an example of the above process in 2-D, consider a square region in which we
wish to optimize a structure for pure compression, applied along the top edge. The
displacements are fixed on the bottom surface and the remaining sides are assumed
to be traction free. The basic topology optimization process outlined above leads
to the solution given in Fig. 1 with a resolution of Nx = 50 and Ny = 50. In Fig.
1, black indicates p = 1 and white indicates p = 0. The blurriness seen in the
transition from black to white are intermediate values of p, which must be dealt
with using a threshold procedure, described in the next subsection.

Fig. 1 An example of a 2-D topology optimization result, optimized for compression

2.2 Point Cloud Generation
After an optimal design is computed, several postprocessing steps are necessary to
generate a 3-D-printable data file. First, a basic threshold procedure is used to elim-

3



inate nondiscrete values of p. Given a solution P, where P is a 3-D array containing
the optimal values of p at a set of discrete voxels:

Pijk = p (xi, yj, zk) . (2)

A discrete approximation P∗ of the solution can then be formed from P by

P∗
ijk =

{
0, Pijk < τ

1, Pijk ≥ τ
, (3)

where τ is some threshold value, which will later be set to 1/2. Again, note that
P∗ is not an optimal solution according to the original problem statement, though
it should well approximate the optimal solution. Now, the voxel representation can
be converted to a set of points in one of 2 ways: Using either the center of the voxel
or the corners. In this report, the corners will be used. To proceed, first the voxel
side length is assumed to be the same for each dimension. In other words, the width,
length, and height of the voxel are equal and given by ∆. Now, given the side length
and array indices, a set of 8 points can be defined as

r1ijk = ((i− 1) ∆, (j − 1) ∆, (k − 1) ∆) ,

r2ijk = ((i− 1) ∆, (j − 1) ∆, k∆) ,

r3ijk = ((i− 1) ∆, j∆, (k − 1) ∆) ,

r4ijk = ((i− 1) ∆, j∆, k∆) ,

r5ijk = (i∆, (j − 1) ∆, (k − 1) ∆) ,

r6ijk = (i∆, (j − 1) ∆, k∆) ,

r7ijk = (i∆, j∆, (k − 1) ∆) ,

r8ijk = (i∆, j∆, k∆) ,

(4)

where indices i, j, and k range from 1 to their respective limits, Nx, Ny, and Nz.
Finally, the complete set of points is given by the corner points of the entries of
P∗ that have a value of 1. For simplicity, this set of points can be described as a
8NxNyNz-by-3 array R with rows

Rm = P∗
ijkrlijk, (5)

where rowm = i+Nx (j − 1)+NxNy (k − 1)+NxNyNz (l − 1) and index l ranges
from 1 to 8, as in Eq. 4. (Note that Einstein summation is not intended throughout.)
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A strict interpretation of Eq. 5 leads to duplicate points for 2 reasons: First, any
element of P∗ that is zero (void) yields a point at the origin (0, 0, 0). Second, any
adjacent material points will share some corner nodes, e.g., r1ijk = r8i−1,j−1,k−1. It is
important then to remove any duplicate points from R before proceeding.

As a 2-D example, the result given in Fig. 1 was converted to a point set using the
above procedure and a threshold value of τ = 0.5 and a side length of ∆ = 1. The
result is given in Fig. 2.
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Fig. 2 Point set representation of the result shown in Fig. 1

2.3 Alpha-Shape Point Processing
Now that a point representation of the optimized topology has been defined, it can
be processed into a surface. There are several methods available to accomplish this
goal, though here we use the concept of α-shapes.4,5 Generally, an α-shape is a
linear approximation of the surface of a dense set of points. More specifically, an
α-shape is a generalization of the convex hull of a set of points and is related to
the Delaunay triangulation (or tesselation in 3-D) of the point set. In 2-D, the α-
shapes of a set of points can be thought of as the surface resulting from attempting
to slide a disk of radius

√
α between each pair of points. Pairs of points through

which the disk cannot pass become edges of the surface. Finally, only edges defining
topological features such as the outer surfaces and any internal holes are retained.

Given that we now have a dense set of points, an α-shape is a convenient way
to generate a linear surface. The point set R can then be processed using the α-
shape algorithms in CGAL; however, the choice of α changes the resulting surface.
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Consider, a very large α (that approaches infinity) is equivalent to the convex hull
of the set of points. On the other hand, a very small α (that approaches zero) will
pass through all pairs of points, not generating a surface at all!

It is then apparent that the parameter α (or the squared radius of the largest line
segment included in a 2-D model) highly influences the resulting surface. Fortu-
nately, we can bound α in a reasonable way given the discretization of the original
optimization problem. A lower bound is then

α >
∆2

4
, (6)

given that if α is any smaller, the result will not include any defining surface as dis-
cussed above. There is some flexibility in the choice of upper bound of α: Choosing
α to be too large will result in interior holes being removed, while choosing too
small of an α leads to a rough surface. Further, while α is a continuous parameter,
the α-shapes associated with a given set of points is actually a discrete, finite set, so
that each α-shape can be examined if desired.

As an example, the point set shown in Fig. 2 is shown processed with several values
of α, in increasing order from Figs. 3 to 6. While the lowest possible α in this case
leads to a somewhat rough shape, higher values of α can lead to loss of detail, es-
pecially in small holes. Fortunately, subdivision can be applied to help with surface
roughness.
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Fig. 3 α-shape representation of the result shown in Fig. 2
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Fig. 4 α-shape representation of the result shown in Fig. 2
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Fig. 5 α-shape representation of the result shown in Fig. 2
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Fig. 6 α-shape representation of the result shown in Fig. 2
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2.4 Mesh Simplification
Mesh simplification can next be applied to reduce the complexity of the surface
representation without losing any detail. The essential function of mesh simplifica-
tion is to remove and join any coplanar facets (or collinear line segments in 2-D).
This is also an important step if subdivision is applied, as subdivision works best on
meshes without small, coplanar facets. While the removal of only coplanar facets
results in an identical geometry description, the mesh simplification algorithms in
CGAL will reduce the complexity of the mesh to a user specified level, ultimately
coarsening the mesh. In this process, the idea is to retain rough features while re-
ducing complexity. For the application here, we simply want to reduce the number
of facets without changing the overall geometry. One method for this is to simply
compute the surface area of or the volume enclosed by the original and simplified
meshes, ensuring that they are identical. A good starting point is to attempt to re-
duce the number of edges by 50%. The CGAL user manual entry for surface mesh
simplification can be found in Cacciola 2015.6

To demonstrate the process in 2-D, we can remove all collinear line segments from
the example above. While this is an oversimplification of the process in 3-D, it
is the goal of our use of the algorithm (i.e., removal of coplanar facets). Fig. 7
shows the result of the α-shape algorithm described above (see Fig. 3), with the
nodes shown in red and the line segments in blue. Clearly, this surface contains
many collinear line segments, which are redundant for the purposes of representing
the surface. The collinear segments can be removed by simply iterating around the
spline, and joining any adjacent segments with the same slope or angle. Fig. 8 gives
the simplified form.

2.5 Subdivision
As a final (optional) step, surface subdivision can be applied to reduce surface
roughness. Surface subdivision is a smoothing process that can be applied to linear
surface representations.7 The process is similar in 2-D and 3-D and essentially in-
volves inserting new vertices around corners iteratively, until a surface is smoothed
to the desired level. In that sense, a recursively applied subdivision method will
converge to an approximately smooth surface. In 3-D, several options are avail-
able in CGAL including Doo-Sabin,8,9 Catmull-Clark,10 loop subdivision, and the
so-called

√
3 subdivision. The differences in the methods in 3-D lies in how the

polygonal facets of the mesh are split.
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Fig. 7 Linear spline representation before simplification
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Fig. 8 Linear spline representation after simplification

In 2-D, the process is simple, but illustrative. Consider a closed linear spline, de-
fined by a set of N vertices arranged in an N -by-2 array V. Subdivision proceeds
by replacing each vertex Vi with 2 new points located along the 2 adjacent line seg-
ments. The location on each line segment is defined as a given, constant percentage
of the total length of the line segment, denoted t. New vertices V1

i and V2
i associated

with original vertex Vi are then given by

V1
i = Vi + t (Vi−1 − Vi) ,

V2
i = Vi + t (Vi+1 − Vi) .

(7)
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Recall that each vertex is replaced with two new vertices, so that each step of sub-
division results in a doubling of the number of vertices. In other words, if the r
denotes the current iteration of subdivision, the number of vertices will be 2rN . Fi-
nally, we may not want to smooth all vertices, such as those associated with bound-
ary or loading conditions. For such vertices we can simply not apply the subdivision
process.

As an example, 2-D subdivision was applied several times to the surface shown in
Fig. 3 with t = 0.25. Figures 9 and 10 show the result of 1 and 4 iterations of
subdivision applied to the surface shown in Fig. 3, respectively. Subdivision is not
a perfect solution: As can be seen in the figures, roughness is still apparent at the
resolution of the original, pixel-based solution.
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Fig. 9 One iteration of subdivision applied to the surface in Fig. 3

Finally, the processed surface is compared with the original, pixel-based solution
from the topology optimization in Fig. 11. It is clear from the comparison that some
features may be missing, and some areas where sharp corners or cusps may have
been intended are rounded out.

2.6 Summary
The aim of the method presented here is to begin with a standard, voxel-based
topology optimization scheme and end with an STL file, ready for use in a 3-D
printer or other additive manufacturing device. Given that aim, a final summary is
discussed here, with additional technical details that may be helpful in reproducing
the method.
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Fig. 10 Four iterations of subdivision applied to the surface in Fig. 3

Fig. 11 Comparison of pixel solution and processed surface

Many basic topology optimization codes can be found on the Internet, the most
well-known being the “99 line topology optimization code written in MATLAB”.11

Three-dimensional versions are also available for MATLAB.12 After a structure
has been optimized, the first step is again to convert the voxel representation to a
discrete set of points in space. The method described in Section 2 can be used and
only requires a user-specified tolerance. The output of this method is simply a list
of 3-D coordinates that can be saved as a text file.

Next, CGAL is used to generate a surface using α-shape processing. The CGAL
download package contains example programs, one of which demonstrates the gen-
eration of α-shapes. This example program can be simply modified to read the text

11



file generated in the previous step. The output from CGAL is a surface in the object
file format (OFF), a basic text-based description of the surface that includes vertices
and connectivity information for the polygonal facets. This OFF file can be read di-
rectly into the surface mesh simplification algorithm. Again, an example program is
available in the CGAL download and only slight modifications are necessary to ac-
commodate an arbitrary input file. This function also requires a stopping criterion
in terms of the percent of edges removed. A good starting point is 50%. Finally,
CGAL’s subdivision algorithms also use an OFF file for input and output.

The final step is to convert the OFF file into an STL file. This can be accomplished
with MATLAB using the following procedure: First, read in the OFF file and save
the data as 2 matrices. One matrix contains the vertex coordinates in an m-by-
3 matrix and the second contains the connectivity information of the surface as
a n-by-3 matrix. These matrices can then be written to the STL format using a
downloadable MATLAB function.13

The table lists the algorithm, implementation language, and input and output file
formats for each step of the postprocessing method.

Table Summary of CGAL-based postprocessing procedure

Step Algorithm Language User input Input Format Output Format
1 Optimization MATLAB Nx, Ny, BCs NA Matrix
2 Point conversion MATLAB Threshold Matrix Text file
3 α-shape CGAL (C++) α Text file OFF
4 Simplification CGAL (C++) % reduction OFF OFF
5 Subdivision CGAL (C++) No. of iterations OFF OFF
6 STL Conversion MATLAB NA OFF STL

3. 3-D Example
To demonstrate the method presented above, a 3-D structure was optimized for
compression. The structure is to fit into a cube and will ultimately be used as a
unit cell in a repeated structure. Though the intention is for the structure to be
optimized for compression, additional in-plane loads were also applied to make the
structure more robust to buckling. (Because a linear elastic forward solver is used,
the optimization cannot explicitly account for buckling and failure.) Accordingly,
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the structure was optimized for 5 loads:

f1(x, y, z = h) = −ẑ,

f2(x, y, z = h) =
1

2
x̂,

f3(x, y, z = h) = −1

2
x̂,

f4(x, y, z = h) =
1

2
ŷ,

f5(x, y, z = h) = −1

2
ŷ,

(8)

all applied to the top surface, or z = h plane, where h is the height. Zero displace-
ment boundary conditions on each component of the displacement were used on the
bottom surface, or z = 0 plane. The volume fraction was set to 0.25 and a resolution
of Nx = Ny = Nz = 20 was used. The optimization problem was solved using the
MATLAB code listed in Liu and Tovar 2015.12

Step 2 (point conversion, see the above table) was completed with a threshold value
of 0.5. After the points were generated, they were saved to a text file in 3 columns,
one for each component. This file was then used in the α-shape algorithm from
CGAL. CGAL also provides a function to return the optimal α-shape for a given
number of connected components, which for our application is one single compo-
nent. This option was used to generate the structure shown in Fig. 12.

For the application considered here, the result shown in Fig. 12 was used as a unit
cell, and a larger structure was generated by repeating the unit cell along the x, y,
and z axes 5 times on each axis. This repetition was completed using the point cloud
representation, and a surface was generated again using the α-shape algorithm.

Next, the resulting surface was simplified using CGAL’s mesh simplification algo-
rithm. In this case, a minimum reduction percentage of 47.5%, reducing the OFF
file size from 26 MB to 8 MB without losing any geometric detail. The resulting
structure is shown in Fig. 13.

Finally, one iteration of subdivision was applied using CGAL’s loop subdivision
algorithm. The algorithm was altered so that facets, edges, and vertices lying on
either the z = 0 or z = 0.04 planes were not subdivided. A detail view of the
bottom corner of the resulting structure is shown in Fig. 14 and for comparison a
similar view of the original structure is shown in Fig. 15.
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Fig. 12 Unit cell after α-shape processing

Fig. 13 Final compression structure

4. Conclusions
A postprocessing methodology has been presented for results of topology opti-
mization methods that give solutions in terms of continuous values on a fixed grid
(voxel-based representation). Additive manufacturing of topologically optimized
structures is a promising area of research, though direct printing of voxel solu-
tions is not possible. Options for postprocessing include the method presented here,
based on computational geometry algorithms implemented in CGAL, and also iso-
surfaces. An isosurface approach attempts to fit a surface description to the dis-
cretized data at a given threshold. One drawback of this approach is that no consid-
eration to component connectivity is given by isosurface algorithms. As discussed
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Fig. 14 Detail view of the final compression structure with subdivision

Fig. 15 Detail view of the final compression structure without subdivision

above, an approach based on α-shapes can ensure that only one connected compo-
nent is generated. One advantage of an isosurface approach is that its surfaces tend
to be smoother than those generated by an α-shape algorithm, reducing the need for
simplification and subdivision.

Regardless of the approach used, postprocessing of topology optimization results is
an important area of study, and more work is necessary to ensure that the processed
surfaces retain the optimal properties of the voxel representation. Recall, the voxel
representation allows for continuous material properties while any post-processed
surface is made up of discrete materials. This will likely change both the volume
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fraction specified in the optimization problem and, more importantly, the mechani-
cal properties.
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